FFSM++ 1.1.0
French Forest Sector Model ++
Loading...
Searching...
No Matches
Ipopt_nlp_problem_debugtest.cpp
Go to the documentation of this file.
2
3#include <cassert>
4#include <iostream>
5
6using namespace Ipopt;
7
8// constructor
11
12//destructor
15
16// returns the size of the problem
17bool Ipopt_nlp_problem_debugtest::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
18 Index& nnz_h_lag, IndexStyleEnum& index_style)
19{
20 // The problem described in Ipopt_nlp_problem_debugtest.hpp has 4 variables, x[0] through x[3]
21 n = 4;
22
23 // one equality constraint and one inequality constraint
24 m = 2;
25
26 // in this example the jacobian is dense and contains 8 nonzeros
27 nnz_jac_g = 8;
28
29 // the hessian is also dense and has 16 total nonzeros, but we
30 // only need the lower left corner (since it is symmetric)
31 nnz_h_lag = 10;
32
33 // use the C style indexing (0-based)
34 index_style = TNLP::C_STYLE;
35
36 return true;
37}
38
39// returns the variable bounds
40bool Ipopt_nlp_problem_debugtest::get_bounds_info(Index n, Number* x_l, Number* x_u,
41 Index m, Number* g_l, Number* g_u)
42{
43 // here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
44 // If desired, we could assert to make sure they are what we think they are.
45 assert(n == 4);
46 assert(m == 2);
47
48 // the variables have lower bounds of 1
49 for (Index i=0; i<4; i++) {
50 x_l[i] = 1.0;
51 }
52
53 // the variables have upper bounds of 5
54 for (Index i=0; i<4; i++) {
55 x_u[i] = 5.0;
56 }
57
58 // the first constraint g1 has a lower bound of 25
59 g_l[0] = 25;
60 // the first constraint g1 has NO upper bound, here we set it to 2e19.
61 // Ipopt interprets any number greater than nlp_upper_bound_inf as
62 // infinity. The default value of nlp_upper_bound_inf and nlp_lower_bound_inf
63 // is 1e19 and can be changed through ipopt options.
64 g_u[0] = 2e19;
65
66 // the second constraint g2 is an equality constraint, so we set the
67 // upper and lower bound to the same value
68 g_l[1] = g_u[1] = 40.0;
69
70 return true;
71}
72
73// returns the initial point for the problem
74bool Ipopt_nlp_problem_debugtest::get_starting_point(Index n, bool init_x, Number* x,
75 bool init_z, Number* z_L, Number* z_U,
76 Index m, bool init_lambda,
77 Number* lambda)
78{
79 // Here, we assume we only have starting values for x, if you code
80 // your own NLP, you can provide starting values for the dual variables
81 // if you wish
82 assert(init_x == true);
83 assert(init_z == false);
84 assert(init_lambda == false);
85
86 // initialize to the given starting point
87 x[0] = 1.0;
88 x[1] = 5.0;
89 x[2] = 5.0;
90 x[3] = 1.0;
91
92 return true;
93}
94
95// returns the value of the objective function
96bool Ipopt_nlp_problem_debugtest::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
97{
98 assert(n == 4);
99
100 obj_value = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
101
102 return true;
103}
104
105// return the gradient of the objective function grad_{x} f(x)
106bool Ipopt_nlp_problem_debugtest::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
107{
108 assert(n == 4);
109
110 grad_f[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
111 grad_f[1] = x[0] * x[3];
112 grad_f[2] = x[0] * x[3] + 1;
113 grad_f[3] = x[0] * (x[0] + x[1] + x[2]);
114
115 return true;
116}
117
118// return the value of the constraints: g(x)
119bool Ipopt_nlp_problem_debugtest::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
120{
121 assert(n == 4);
122 assert(m == 2);
123
124 g[0] = x[0] * x[1] * x[2] * x[3];
125 g[1] = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3];
126
127 return true;
128}
129
130// return the structure or values of the jacobian
131bool Ipopt_nlp_problem_debugtest::eval_jac_g(Index n, const Number* x, bool new_x,
132 Index m, Index nele_jac, Index* iRow, Index *jCol,
133 Number* values)
134{
135 if (values == NULL) {
136 // return the structure of the jacobian
137
138 // this particular jacobian is dense
139 iRow[0] = 0;
140 jCol[0] = 0;
141 iRow[1] = 0;
142 jCol[1] = 1;
143 iRow[2] = 0;
144 jCol[2] = 2;
145 iRow[3] = 0;
146 jCol[3] = 3;
147 iRow[4] = 1;
148 jCol[4] = 0;
149 iRow[5] = 1;
150 jCol[5] = 1;
151 iRow[6] = 1;
152 jCol[6] = 2;
153 iRow[7] = 1;
154 jCol[7] = 3;
155 }
156 else {
157 // return the values of the jacobian of the constraints
158
159 values[0] = x[1]*x[2]*x[3]; // 0,0
160 values[1] = x[0]*x[2]*x[3]; // 0,1
161 values[2] = x[0]*x[1]*x[3]; // 0,2
162 values[3] = x[0]*x[1]*x[2]; // 0,3
163
164 values[4] = 2*x[0]; // 1,0
165 values[5] = 2*x[1]; // 1,1
166 values[6] = 2*x[2]; // 1,2
167 values[7] = 2*x[3]; // 1,3
168 }
169
170 return true;
171}
172
173
174//return the structure or values of the hessian
175bool Ipopt_nlp_problem_debugtest::eval_h(Index n, const Number* x, bool new_x,
176 Number obj_factor, Index m, const Number* lambda,
177 bool new_lambda, Index nele_hess, Index* iRow,
178 Index* jCol, Number* values)
179{
180 if (values == NULL) {
181 // return the structure. This is a symmetric matrix, fill the lower left
182 // triangle only.
183
184 // the hessian for this problem is actually dense
185 Index idx=0;
186 for (Index row = 0; row < 4; row++) {
187 for (Index col = 0; col <= row; col++) {
188 iRow[idx] = row;
189 jCol[idx] = col;
190 idx++;
191 }
192 }
193
194 assert(idx == nele_hess);
195 }
196 else {
197 // return the values. This is a symmetric matrix, fill the lower left
198 // triangle only
199
200 // fill the objective portion
201 values[0] = obj_factor * (2*x[3]); // 0,0
202
203 values[1] = obj_factor * (x[3]); // 1,0
204 values[2] = 0.; // 1,1
205
206 values[3] = obj_factor * (x[3]); // 2,0
207 values[4] = 0.; // 2,1
208 values[5] = 0.; // 2,2
209
210 values[6] = obj_factor * (2*x[0] + x[1] + x[2]); // 3,0
211 values[7] = obj_factor * (x[0]); // 3,1
212 values[8] = obj_factor * (x[0]); // 3,2
213 values[9] = 0.; // 3,3
214
215
216 // add the portion for the first constraint
217 values[1] += lambda[0] * (x[2] * x[3]); // 1,0
218
219 values[3] += lambda[0] * (x[1] * x[3]); // 2,0
220 values[4] += lambda[0] * (x[0] * x[3]); // 2,1
221
222 values[6] += lambda[0] * (x[1] * x[2]); // 3,0
223 values[7] += lambda[0] * (x[0] * x[2]); // 3,1
224 values[8] += lambda[0] * (x[0] * x[1]); // 3,2
225
226 // add the portion for the second constraint
227 values[0] += lambda[1] * 2; // 0,0
228
229 values[2] += lambda[1] * 2; // 1,1
230
231 values[5] += lambda[1] * 2; // 2,2
232
233 values[9] += lambda[1] * 2; // 3,3
234 }
235
236 return true;
237}
238
239
240
242 Index n, const Number* x, const Number* z_L, const Number* z_U,
243 Index m, const Number* g, const Number* lambda,
244 Number obj_value,
245 const IpoptData* ip_data,
246 IpoptCalculatedQuantities* ip_cq)
247{
248 // here is where we would store the solution to variables, or write to a file, etc
249 // so we could use the solution.
250
251 // For this example, we write the solution to the console
252 std::cout << std::endl << std::endl << "Solution of the primal variables, x" << std::endl;
253 for (Index i=0; i<n; i++) {
254 std::cout << "x[" << i << "] = " << x[i] << std::endl;
255 }
256
257 std::cout << std::endl << std::endl << "Solution of the bound multipliers, z_L and z_U" << std::endl;
258 for (Index i=0; i<n; i++) {
259 std::cout << "z_L[" << i << "] = " << z_L[i] << std::endl;
260 }
261 for (Index i=0; i<n; i++) {
262 std::cout << "z_U[" << i << "] = " << z_U[i] << std::endl;
263 }
264
265 std::cout << std::endl << std::endl << "Objective value" << std::endl;
266 std::cout << "f(x*) = " << obj_value << std::endl;
267
268 std::cout << std::endl << "Final value of the constraints:" << std::endl;
269 for (Index i=0; i<m ;i++) {
270 std::cout << "g(" << i << ") = " << g[i] << std::endl;
271 }
272}
virtual bool get_bounds_info(Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u)
virtual bool eval_f(Index n, const Number *x, bool new_x, Number &obj_value)
virtual bool get_starting_point(Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda)
virtual bool get_nlp_info(Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style)
virtual bool eval_jac_g(Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values)
virtual bool eval_g(Index n, const Number *x, bool new_x, Index m, Number *g)
virtual void finalize_solution(SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_value, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
virtual bool eval_h(Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values)
virtual bool eval_grad_f(Index n, const Number *x, bool new_x, Number *grad_f)